Secure Model Deployment for AI/LLM
Protect your AI models from theft, extraction, and manipulation
Critical Security Requirements
According to industry standards, secure model deployment requires defense-in-depth with encryption, access control, and continuous monitoring. See FINOS framework.
Deployment Security Score
Overall security posture of your model deployment
85%
Good
Encryption
3/3
Access Control
2/3
Infrastructure
3/3
Monitoring
2/3
Model Security Threats
Understanding and mitigating risks to AI models per security research
Model Extraction
critical
Impact: IP theft, competitive disadvantage
Mitigations:
Rate limiting
Query obfuscation
Watermarking
Model Poisoning
high
Impact: Backdoors, biased outputs
Mitigations:
Input validation
Anomaly detection
Secure training
Model Inversion
high
Impact: Training data exposure
Mitigations:
Differential privacy
Output filtering
Access controls
Supply Chain Attacks
critical
Impact: Compromised models, data breaches
Mitigations:
Signed models
Dependency scanning
Provenance tracking
Model Extraction Defense
// Model Extraction Defense Implementation
class ModelExtractionDefense {
constructor(model, config) {
this.model = model;
this.config = config;
this.queryHistory = new Map();
this.suspiciousPatterns = new Set();
}
async protectedInference(request, userId) {
// 1. Rate limiting per user
if (!this.checkRateLimit(userId)) {
throw new Error('Rate limit exceeded');
}
// 2. Query pattern analysis
const queryFingerprint = this.generateQueryFingerprint(request);
this.recordQuery(userId, queryFingerprint);
// 3. Detect extraction attempts
if (this.detectExtractionPattern(userId)) {
await this.handleSuspiciousActivity(userId);
throw new Error('Suspicious activity detected');
}
// 4. Input perturbation
const perturbedInput = this.perturbInput(request.input);
// 5. Model inference with protection
let output = await this.model.predict(perturbedInput);
// 6. Output obfuscation
output = this.obfuscateOutput(output);
// 7. Watermark injection
output = this.injectWatermark(output, userId);
// 8. Log for audit
await this.logInference({
userId,
timestamp: Date.now(),
inputHash: this.hashInput(request.input),
outputHash: this.hashOutput(output),
protectionsApplied: ['rate_limit', 'perturbation', 'obfuscation', 'watermark']
});
return output;
}
checkRateLimit(userId) {
const userQueries = this.queryHistory.get(userId) || [];
const recentQueries = userQueries.filter(
q => Date.now() - q.timestamp < this.config.rateLimitWindow
);
return recentQueries.length < this.config.maxQueriesPerWindow;
}
detectExtractionPattern(userId) {
const userQueries = this.queryHistory.get(userId) || [];
// Check for systematic querying patterns
const patterns = {
gridSearch: this.detectGridSearch(userQueries),
boundaryProbing: this.detectBoundaryProbing(userQueries),
highFrequency: userQueries.length > this.config.suspiciousThreshold,
lowEntropy: this.calculateQueryEntropy(userQueries) < this.config.entropyThreshold
};
return Object.values(patterns).some(detected => detected);
}
perturbInput(input) {
// Add controlled noise to prevent exact extraction
const noise = this.generateNoise(input, this.config.noiseLevel);
return this.addNoise(input, noise);
}
obfuscateOutput(output) {
// Round confidence scores
if (output.confidences) {
output.confidences = output.confidences.map(
c => Math.round(c * 100) / 100
);
}
// Limit precision of numerical outputs
if (output.embeddings) {
output.embeddings = output.embeddings.map(
e => Math.round(e * 10000) / 10000
);
}
// Add random delay to timing attacks
const delay = Math.random() * this.config.maxDelayMs;
return new Promise(resolve =>
setTimeout(() => resolve(output), delay)
);
}
injectWatermark(output, userId) {
// Embed traceable watermark in model outputs
const watermark = this.generateWatermark(userId, Date.now());
if (output.embeddings) {
// LSB watermarking for embeddings
output.embeddings = this.embedWatermarkInEmbeddings(
output.embeddings,
watermark
);
}
if (output.text) {
// Linguistic watermarking for text
output.text = this.embedWatermarkInText(output.text, watermark);
}
return output;
}
async handleSuspiciousActivity(userId) {
// Log security event
await this.securityLogger.log({
event: 'MODEL_EXTRACTION_ATTEMPT',
userId,
timestamp: Date.now(),
evidence: this.gatherEvidence(userId)
});
// Notify security team
await this.alerting.send({
severity: 'high',
message: `Potential model extraction attempt by user ${userId}`
});
// Apply temporary restrictions
this.applyRestrictions(userId);
}
}
Deploy AI Models Securely with ParrotRouter
ParrotRouter provides enterprise-grade security for model deployment with encryption, access control, and comprehensive monitoring out of the box.
References
- [1] OWASP. "OWASP Top 10 for LLM Applications" (2024)
- [2] NIST. "AI Risk Management Framework" (2024)
- [3] Microsoft. "LLM Security Best Practices" (2024)