Real Estate & Property AI
Transform real estate operations with LLM-powered tools that reduce listing creation time by 96% and improve lead conversion. 37.6% of agents now use AI.
From hours to minutes
Better qualified leads
AI-enhanced pricing
Automated workflows
from typing import Dict, Any, List, Optional, Tuple
import asyncio
from datetime import datetime
import numpy as np
from geopy import distance
class RealEstateLLMPlatform:
"""Comprehensive Real Estate AI Platform
Handles listing generation, market analysis, and property management
Based on research showing 50-70% workload reduction"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.market_analyzer = MarketIntelligenceAI()
self.property_valuator = PropertyValuationLLM()
self.listing_optimizer = ListingOptimizationAI()
self.virtual_assistant = PropertyVirtualAssistant()
async def generate_property_listing(
self,
property_data: Dict[str, Any],
target_audience: str,
comparable_properties: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Generate optimized property listing with AI"""
# 1. Extract key property features
property_features = await self.extract_property_highlights(
property_data,
include_neighborhood=True,
include_amenities=True
)
# 2. Analyze market positioning
market_position = await self.market_analyzer.analyze_positioning(
property_data,
comparable_properties
)
# 3. Generate compelling description
listing_content = await self.llm.chat.completions.create(
model="claude-3-opus-20240229",
messages=[{
"role": "system",
"content": """You are an expert real estate copywriter.
Create compelling, SEO-optimized property descriptions that
highlight unique features and appeal to target buyers."""
},
{
"role": "user",
"content": f"""
Property Details:
{json.dumps(property_features, indent=2)}
Market Position:
{json.dumps(market_position, indent=2)}
Target Audience: {target_audience}
Create:
1. Attention-grabbing headline (60 chars)
2. Compelling description (300-400 words)
3. Key features list (10 bullet points)
4. Neighborhood highlights
5. SEO keywords for maximum visibility
6. Call-to-action
Style: Professional yet warm, emphasizing lifestyle benefits
"""
}],
temperature=0.7,
max_tokens=1500
)
listing = self.parse_listing_content(
listing_content.choices[0].message.content
)
# 4. Generate virtual tour script
tour_script = await self.generate_virtual_tour_script(
property_features,
listing['description']
)
# 5. Create marketing variations
marketing_variants = await self.create_marketing_variants(
listing,
channels=['website', 'social', 'email', 'print']
)
return {
"listing": listing,
"tour_script": tour_script,
"marketing_variants": marketing_variants,
"seo_score": await self.calculate_seo_score(listing),
"predicted_performance": await self.predict_listing_performance(
listing, market_position
)
}
async def analyze_property_market(
self,
location: Dict[str, Any],
property_type: str,
time_period: str = "6_months"
) -> Dict[str, Any]:
"""Comprehensive market analysis with predictive insights"""
# Gather multi-source market data
market_data = await self.market_analyzer.gather_data(
location,
property_type,
sources=['mls', 'public_records', 'economic_indicators']
)
# Generate market insights
insights = await self.llm.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{
"role": "user",
"content": f"""
Analyze real estate market data:
Location: {location}
Property Type: {property_type}
Market Data: {json.dumps(market_data, indent=2)}
Provide:
1. Current market conditions summary
2. Price trends and projections
3. Supply/demand dynamics
4. Investment opportunities
5. Risk factors
6. Optimal timing recommendations
7. Neighborhood development insights
Format as actionable intelligence for investors/agents.
"""
}],
temperature=0.4
)
return {
"market_summary": insights.choices[0].message.content,
"price_trends": market_data['price_trends'],
"inventory_levels": market_data['inventory'],
"days_on_market": market_data['average_dom'],
"appreciation_forecast": await self.forecast_appreciation(
market_data
),
"investment_score": await self.calculate_investment_score(
market_data
)
}
# Property Valuation AI
class PropertyValuationLLM:
"""AI-powered property valuation with explanations
Based on research showing 89% accuracy with interpretability"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.comp_analyzer = ComparableAnalyzer()
self.feature_extractor = PropertyFeatureExtractor()
async def estimate_property_value(
self,
property_details: Dict[str, Any],
comparable_sales: List[Dict[str, Any]],
market_conditions: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate property valuation with detailed justification"""
# Extract hedonic variables
hedonic_features = await self.feature_extractor.extract(
property_details,
include_quality_scores=True
)
# Analyze comparables
comp_analysis = await self.comp_analyzer.analyze(
property_details,
comparable_sales,
max_distance_miles=1.0
)
# Generate valuation with reasoning
valuation = await self.llm.chat.completions.create(
model="claude-3-sonnet-20240229",
messages=[{
"role": "system",
"content": """You are an expert real estate appraiser.
Provide accurate valuations with clear justifications based on
comparable sales, property features, and market conditions."""
},
{
"role": "user",
"content": f"""
Property to Value:
{json.dumps(hedonic_features, indent=2)}
Comparable Sales Analysis:
{json.dumps(comp_analysis, indent=2)}
Market Conditions:
{json.dumps(market_conditions, indent=2)}
Provide:
1. Estimated value range (min/max)
2. Most probable value
3. Confidence level (0-100)
4. Key value drivers
5. Adjustments from comparables
6. Market condition impact
7. Risk factors
Show your reasoning step by step.
"""
}],
temperature=0.3,
max_tokens=2000
)
valuation_result = self.parse_valuation(
valuation.choices[0].message.content
)
# Validate with traditional models
traditional_estimate = await self.run_hedonic_model(
hedonic_features,
comp_analysis
)
return {
"llm_valuation": valuation_result,
"traditional_estimate": traditional_estimate,
"confidence_score": valuation_result['confidence'],
"value_range": {
"min": valuation_result['min_value'],
"max": valuation_result['max_value'],
"most_probable": valuation_result['probable_value']
},
"justification": valuation_result['reasoning'],
"comparable_adjustments": valuation_result['adjustments']
}
# Lead Management AI
class LeadManagementLLM:
"""Automate lead generation and qualification"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.lead_scorer = LeadScoringEngine()
self.communication_ai = CommunicationAI()
async def qualify_lead(
self,
lead_data: Dict[str, Any],
interaction_history: List[Dict[str, Any]],
available_properties: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Qualify and score leads with AI"""
# Analyze lead intent and readiness
lead_analysis = await self.llm.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{
"role": "user",
"content": f"""
Analyze this real estate lead:
Lead Information: {json.dumps(lead_data, indent=2)}
Interactions: {json.dumps(interaction_history[-5:], indent=2)}
Determine:
1. Buying intent (0-100)
2. Timeline (immediate/3mo/6mo/12mo+)
3. Budget range
4. Property preferences
5. Decision factors
6. Qualification score (0-100)
7. Recommended next actions
"""
}],
temperature=0.4
)
qualification = json.loads(
lead_analysis.choices[0].message.content
)
# Match with properties
property_matches = await self.match_properties(
qualification['preferences'],
available_properties
)
# Generate personalized outreach
outreach_message = await self.communication_ai.create_message(
lead_data,
qualification,
property_matches[:3]
)
return {
"qualification_score": qualification['qualification_score'],
"intent_level": qualification['buying_intent'],
"timeline": qualification['timeline'],
"matched_properties": property_matches,
"outreach_message": outreach_message,
"follow_up_strategy": await self.create_follow_up_plan(
qualification
)
}
# Property Management Automation
class PropertyManagementLLM:
"""Automate property management operations"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.tenant_screening = TenantScreeningAI()
self.maintenance_ai = MaintenanceAutomation()
async def screen_tenant_application(
self,
application: Dict[str, Any],
property_requirements: Dict[str, Any],
screening_criteria: Dict[str, Any]
) -> Dict[str, Any]:
"""AI-powered tenant screening and matching"""
# Extract relevant information
applicant_profile = await self.tenant_screening.extract_profile(
application
)
# Analyze against criteria
screening_result = await self.llm.chat.completions.create(
model="claude-3-sonnet-20240229",
messages=[{
"role": "user",
"content": f"""
Screen tenant application:
Applicant Profile: {json.dumps(applicant_profile, indent=2)}
Property Requirements: {json.dumps(property_requirements, indent=2)}
Screening Criteria: {json.dumps(screening_criteria, indent=2)}
Evaluate:
1. Financial stability score (0-100)
2. Rental history assessment
3. Employment verification status
4. Reference quality
5. Overall risk score (0-100)
6. Approval recommendation
7. Any concerns or conditions
Be objective and fair in assessment.
"""
}],
temperature=0.3
)
screening = json.loads(
screening_result.choices[0].message.content
)
return {
"screening_result": screening,
"approval_status": screening['approval_recommendation'],
"risk_score": screening['overall_risk_score'],
"conditions": screening.get('conditions', []),
"automated_references": await self.check_references(
applicant_profile
)
}
async def handle_maintenance_request(
self,
request: Dict[str, Any],
property_info: Dict[str, Any],
vendor_network: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Automate maintenance request processing"""
# Classify and prioritize request
classification = await self.maintenance_ai.classify_request(
request,
property_info
)
# Generate work order
work_order = await self.llm.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{
"role": "user",
"content": f"""
Create maintenance work order:
Request: {json.dumps(request, indent=2)}
Classification: {json.dumps(classification, indent=2)}
Property: {json.dumps(property_info, indent=2)}
Generate:
1. Detailed work description
2. Required skills/tools
3. Estimated time and cost
4. Priority level justification
5. Tenant communication template
6. Vendor selection criteria
"""
}],
temperature=0.5
)
work_order_details = json.loads(
work_order.choices[0].message.content
)
# Match with vendors
vendor_matches = await self.match_vendors(
work_order_details,
vendor_network
)
return {
"work_order": work_order_details,
"priority": classification['priority'],
"vendor_recommendations": vendor_matches[:3],
"estimated_cost": work_order_details['estimated_cost'],
"tenant_notification": work_order_details['tenant_communication'],
"auto_scheduled": classification['priority'] == 'emergency'
}
# Virtual Property Tours
class VirtualTourAI:
"""AI-powered virtual property tours and assistance"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.scene_analyzer = SceneAnalyzer()
self.question_handler = QuestionHandler()
async def generate_tour_narration(
self,
property_data: Dict[str, Any],
tour_path: List[Dict[str, Any]],
viewer_profile: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""Generate personalized virtual tour narration"""
narration_segments = []
for room in tour_path:
# Analyze room features
room_features = await self.scene_analyzer.analyze_room(
room['images'],
room['metadata']
)
# Generate narration
narration = await self.llm.chat.completions.create(
model="claude-3-sonnet-20240229",
messages=[{
"role": "user",
"content": f"""
Create virtual tour narration for {room['name']}:
Room Features: {json.dumps(room_features, indent=2)}
Viewer Profile: {json.dumps(viewer_profile, indent=2)}
Create engaging narration that:
1. Highlights key features
2. Addresses likely viewer interests
3. Creates emotional connection
4. Mentions practical details
5. Transitions smoothly to next room
Keep it conversational and under 60 seconds.
"""
}],
temperature=0.7
)
narration_segments.append({
"room": room['name'],
"narration": narration.choices[0].message.content,
"features": room_features,
"duration": self.estimate_duration(
narration.choices[0].message.content
)
})
return {
"tour_narration": narration_segments,
"total_duration": sum(s['duration'] for s in narration_segments),
"personalization_level": "high" if viewer_profile else "general",
"interactive_elements": await self.add_interactive_elements(
narration_segments
)
}
# Neighborhood Intelligence
class NeighborhoodIntelligenceLLM:
"""Generate comprehensive neighborhood insights"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.data_aggregator = NeighborhoodDataAggregator()
async def generate_neighborhood_guide(
self,
location: Dict[str, Any],
buyer_interests: List[str]
) -> Dict[str, Any]:
"""Create personalized neighborhood guide"""
# Aggregate neighborhood data
neighborhood_data = await self.data_aggregator.gather(
location,
categories=[
'schools', 'amenities', 'transportation',
'safety', 'demographics', 'development'
]
)
# Generate comprehensive guide
guide = await self.llm.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{
"role": "user",
"content": f"""
Create neighborhood guide for {location['address']}:
Neighborhood Data: {json.dumps(neighborhood_data, indent=2)}
Buyer Interests: {buyer_interests}
Include:
1. Neighborhood overview and character
2. Lifestyle amenities relevant to interests
3. Transportation and commute options
4. School information and ratings
5. Local dining and entertainment
6. Safety and community aspects
7. Future development plans
8. Investment potential
Make it engaging and informative, highlighting what makes
this neighborhood special for the target buyer.
"""
}],
temperature=0.6,
max_tokens=2000
)
return {
"neighborhood_guide": guide.choices[0].message.content,
"data_points": neighborhood_data,
"walkability_score": neighborhood_data['walkability'],
"school_ratings": neighborhood_data['schools'],
"market_trends": await self.analyze_local_trends(
location,
neighborhood_data
)
}
# Deploy with ParrotRouter.com for:
# - Multi-model support for different real estate tasks
# - High-volume listing generation
# - Real-time market analysis
# - Secure document processing
# - 24/7 virtual tour availabilityTime Savings/mo
Revenue Increase
Automation Savings
Monthly ROI
Conversion Rate
SEO-Optimized Descriptions
AI crafts unique, keyword-rich listings that rank higher and attract more qualified buyers.
Photo Analysis & Captions
Automatically analyze property photos and generate descriptive captions highlighting key features.
Neighborhood Insights
Generate comprehensive guides covering schools, amenities, transportation, and lifestyle factors.
Virtual Tour Scripts
Create engaging narration for virtual property tours that highlight features and create emotional connections.
A top-50 real estate brokerage implemented our AI platform across 500 agents and saw remarkable results in just 3 months:
Faster listings
More closings
Additional revenue
Agent satisfaction
Join the 37.6% of Agents Using AI to Win More Listings
Transform your real estate business with ParrotRouter's AI platform. Create listings faster, convert more leads, and provide exceptional service at scale.
- [1] McKinsey. "The State of AI Report" (2024)
- [2] Gartner. "Generative AI Research" (2024)
- [3] Harvard Business Review. "AI in Business" (2024)