Load Balancing Multiple Models
Distribute requests across multiple LLM providers and models for 99.99% uptime. Implement intelligent routing, failover, and cost optimization.
Intelligent Load Balancer
class ModelLoadBalancer:
def __init__(self):
self.models = {
'primary': {'endpoint': 'gpt-4', 'weight': 0.5, 'latency': 200},
'secondary': {'endpoint': 'claude-3', 'weight': 0.3, 'latency': 150},
'fallback': {'endpoint': 'llama-3', 'weight': 0.2, 'latency': 100}
}
async def route_request(self, request):
# Health check all endpoints
healthy_models = await self.health_check()
# Route based on latency requirements
if request.max_latency < 150:
return self.route_to_fastest(healthy_models)
# Weighted round-robin for normal requests
return self.weighted_route(healthy_models)ParrotRouter handles load balancing automatically across 100+ models with built-in health checks and failover.
References
- [1] arXiv. "Efficient LLM Inference" (2024)
- [2] Hugging Face. "GPU Inference Optimization" (2024)
- [3] NVIDIA. "LLM Inference Optimization" (2024)