Caching Strategies for LLMs
Reduce LLM costs by 60-90% with intelligent caching. Learn semantic, exact-match, and hybrid caching strategies for production deployments.
Semantic Cache
Vector similarity for similar queries
Exact Match
Perfect for repeated queries
TTL Management
Automatic cache invalidation
Semantic Caching Implementation
class SemanticCache: def __init__(self, embedding_model="text-embedding-3-small"): self.embeddings = {} self.cache = {} self.threshold = 0.95 async def get_or_compute(self, prompt, llm_func): # Generate embedding embedding = await self.embed(prompt) # Find similar cached responses for cached_embedding, response in self.cache.items(): similarity = cosine_similarity(embedding, cached_embedding) if similarity > self.threshold: return response # Compute and cache new response response = await llm_func(prompt) self.cache[embedding] = response return response
References
- [1] arXiv. "Efficient LLM Inference" (2024)
- [2] Hugging Face. "GPU Inference Optimization" (2024)
- [3] NVIDIA. "LLM Inference Optimization" (2024)