Caching Strategies for LLMs
Reduce LLM costs by 60-90% with intelligent caching. Learn semantic, exact-match, and hybrid caching strategies for production deployments.
Semantic Cache
Vector similarity for similar queries
Exact Match
Perfect for repeated queries
TTL Management
Automatic cache invalidation
Semantic Caching Implementation
class SemanticCache:
def __init__(self, embedding_model="text-embedding-3-small"):
self.embeddings = {}
self.cache = {}
self.threshold = 0.95
async def get_or_compute(self, prompt, llm_func):
# Generate embedding
embedding = await self.embed(prompt)
# Find similar cached responses
for cached_embedding, response in self.cache.items():
similarity = cosine_similarity(embedding, cached_embedding)
if similarity > self.threshold:
return response
# Compute and cache new response
response = await llm_func(prompt)
self.cache[embedding] = response
return responseReferences
- [1] arXiv. "Efficient LLM Inference" (2024)
- [2] Hugging Face. "GPU Inference Optimization" (2024)
- [3] NVIDIA. "LLM Inference Optimization" (2024)