Human Resources & Recruitment AI

Transform HR with LLM-powered recruitment, reducing time-to-hire by 57% while improving candidate quality. 20% of leaders use AI extensively.

57% Faster Hiring

From 42 to 18 days average

50% Cost Reduction

Lower cost-per-hire with automation

22% Better Quality

Higher performing hires

85% Less Bias

More inclusive hiring process

Enterprise HR AI Platform
Complete recruitment and HR automation with knowledge graph integration
from typing import Dict, Any, List, Optional, Tuple
import asyncio
from datetime import datetime, timedelta
import numpy as np
from dataclasses import dataclass

class HRRecruitmentLLM:
    """Advanced HR & Recruitment AI Platform
    Integrates resume screening, candidate matching, and bias reduction
    Based on HRGraph research for 30-50% efficiency gains"""
    
    def __init__(self, parrotrouter_api_key: str):
        self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
        self.knowledge_graph = HRKnowledgeGraph()
        self.bias_detector = BiasReductionEngine()
        self.skills_analyzer = SkillsMatchingAI()
        self.engagement_predictor = EmployeeEngagementAI()
        
    async def screen_candidates(
        self,
        job_posting: Dict[str, Any],
        resumes: List[Dict[str, Any]],
        diversity_targets: Optional[Dict[str, float]] = None
    ) -> List[Dict[str, Any]]:
        """Screen resumes with bias reduction and skill matching"""
        
        # 1. Extract job requirements and build skill profile
        job_requirements = await self.extract_job_requirements(job_posting)
        required_skills = await self.knowledge_graph.expand_skills(
            job_requirements['skills'],
            include_related=True,
            include_synonyms=True
        )
        
        # 2. Process each resume
        screened_candidates = []
        
        for resume in resumes:
            # Anonymize to reduce bias
            anonymized = await self.bias_detector.anonymize_resume(resume)
            
            # Extract candidate skills and experience
            candidate_profile = await self.extract_candidate_profile(
                anonymized,
                include_implicit_skills=True
            )
            
            # Calculate match score using LLM
            match_analysis = await self.llm.chat.completions.create(
                model="claude-3-opus-20240229",
                messages=[{
                    "role": "system",
                    "content": """You are an expert HR recruiter analyzing candidate fit.
                    Focus only on skills, experience, and qualifications.
                    Ignore any demographic information."""
                },
                {
                    "role": "user",
                    "content": f"""
                    Job Requirements:
                    {json.dumps(job_requirements, indent=2)}
                    
                    Candidate Profile:
                    {json.dumps(candidate_profile, indent=2)}
                    
                    Analyze:
                    1. Skill match percentage (0-100)
                    2. Experience relevance (0-100)
                    3. Potential for role (0-100)
                    4. Key strengths for this role
                    5. Development areas
                    6. Overall recommendation (0-100)
                    
                    Return as JSON.
                    """
                }],
                response_format={"type": "json_object"},
                temperature=0.3
            )
            
            match_result = json.loads(
                match_analysis.choices[0].message.content
            )
            
            # Add to results with original resume data
            screened_candidates.append({
                "candidate": resume,
                "match_score": match_result['overall_recommendation'],
                "skill_match": match_result['skill_match_percentage'],
                "strengths": match_result['key_strengths'],
                "development_areas": match_result['development_areas'],
                "anonymized_score": True  # Flag for bias-free scoring
            })
        
        # 3. Apply diversity considerations if specified
        if diversity_targets:
            screened_candidates = await self.apply_diversity_optimization(
                screened_candidates,
                diversity_targets
            )
        
        # 4. Sort by match score and return top candidates
        screened_candidates.sort(
            key=lambda x: x['match_score'],
            reverse=True
        )
        
        return screened_candidates
    
    async def optimize_job_description(
        self,
        job_description: str,
        target_audience: Optional[Dict[str, Any]] = None
    ) -> Dict[str, Any]:
        """Optimize job descriptions for clarity and inclusivity"""
        
        # Analyze current description
        analysis = await self.llm.chat.completions.create(
            model="gpt-4-turbo-preview",
            messages=[{
                "role": "user",
                "content": f"""
                Analyze this job description for:
                1. Clarity and readability
                2. Inclusive language
                3. Unnecessary jargon
                4. Gender-coded words
                5. Age bias indicators
                6. Education requirements (are they necessary?)
                
                Job Description:
                {job_description}
                
                Provide specific improvement suggestions.
                """
            }],
            temperature=0.4
        )
        
        # Generate optimized version
        optimized = await self.llm.chat.completions.create(
            model="claude-3-sonnet-20240229",
            messages=[{
                "role": "user",
                "content": f"""
                Rewrite this job description to be:
                1. More inclusive and welcoming
                2. Clearer about actual responsibilities
                3. Free from unnecessary jargon
                4. Focused on outcomes not just requirements
                5. SEO-optimized for job boards
                
                Original: {job_description}
                
                Analysis: {analysis.choices[0].message.content}
                """
            }],
            temperature=0.7
        )
        
        return {
            "original": job_description,
            "optimized": optimized.choices[0].message.content,
            "improvements": analysis.choices[0].message.content,
            "bias_score": await self.bias_detector.score_text(
                job_description
            ),
            "readability_score": await self.calculate_readability(
                optimized.choices[0].message.content
            )
        }

# Intelligent Interview Management
class InterviewAutomationAI:
    """Automate interview scheduling and initial screening"""
    
    def __init__(self, parrotrouter_api_key: str):
        self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
        self.calendar_integration = CalendarAPI()
        self.question_bank = InterviewQuestionBank()
        
    async def schedule_interviews(
        self,
        candidates: List[Dict[str, Any]],
        interviewers: List[Dict[str, Any]],
        interview_types: List[str]
    ) -> Dict[str, Any]:
        """Intelligently schedule interviews based on availability"""
        
        scheduled_interviews = []
        
        for candidate in candidates:
            # Get candidate availability
            candidate_slots = await self.get_availability_slots(
                candidate['email'],
                days_ahead=14
            )
            
            # Match with interviewer availability
            for interview_type in interview_types:
                suitable_interviewers = self.match_interviewers(
                    interviewers,
                    interview_type,
                    candidate['role']
                )
                
                # Find optimal slot
                optimal_slot = await self.find_optimal_slot(
                    candidate_slots,
                    suitable_interviewers,
                    duration=self.get_interview_duration(interview_type)
                )
                
                if optimal_slot:
                    scheduled_interviews.append({
                        "candidate": candidate,
                        "interviewer": optimal_slot['interviewer'],
                        "type": interview_type,
                        "time": optimal_slot['time'],
                        "duration": optimal_slot['duration'],
                        "meeting_link": await self.create_meeting_link(
                            optimal_slot
                        )
                    })
        
        return {
            "scheduled": scheduled_interviews,
            "success_rate": len(scheduled_interviews) / 
                          (len(candidates) * len(interview_types)),
            "calendar_invites": await self.send_calendar_invites(
                scheduled_interviews
            )
        }
    
    async def conduct_ai_screening(
        self,
        candidate: Dict[str, Any],
        job_requirements: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Conduct initial AI-powered screening interview"""
        
        # Generate role-specific questions
        screening_questions = await self.question_bank.generate_questions(
            role=job_requirements['title'],
            skills=job_requirements['required_skills'],
            experience_level=job_requirements['experience_level'],
            question_count=5
        )
        
        # Simulate conversational screening
        screening_results = []
        
        for question in screening_questions:
            # In production, this would be actual candidate responses
            # Here we'll analyze hypothetical responses
            
            response_analysis = await self.llm.chat.completions.create(
                model="gpt-4-turbo-preview",
                messages=[{
                    "role": "system",
                    "content": """Evaluate candidate responses for:
                    1. Relevance to question
                    2. Depth of knowledge
                    3. Communication clarity
                    4. Problem-solving approach
                    5. Cultural fit indicators"""
                },
                {
                    "role": "user",
                    "content": f"""
                    Question: {question['question']}
                    Expected competencies: {question['competencies']}
                    
                    Evaluate and score 0-100.
                    """
                }],
                temperature=0.3
            )
            
            screening_results.append({
                "question": question,
                "analysis": response_analysis.choices[0].message.content
            })
        
        # Generate overall recommendation
        overall_assessment = await self.generate_screening_report(
            candidate,
            screening_results,
            job_requirements
        )
        
        return overall_assessment

# Employee Lifecycle Management
class EmployeeLifecycleLLM:
    """Manage onboarding, performance, and engagement with AI"""
    
    def __init__(self, parrotrouter_api_key: str):
        self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
        self.performance_analyzer = PerformanceAnalyzer()
        self.engagement_monitor = EngagementMonitor()
        
    async def generate_onboarding_plan(
        self,
        new_hire: Dict[str, Any],
        role: Dict[str, Any],
        team: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Create personalized onboarding plan"""
        
        onboarding_plan = await self.llm.chat.completions.create(
            model="claude-3-sonnet-20240229",
            messages=[{
                "role": "user",
                "content": f"""
                Create a comprehensive 90-day onboarding plan for:
                
                New Hire: {new_hire['name']}
                Role: {role['title']}
                Department: {team['department']}
                Start Date: {new_hire['start_date']}
                
                Include:
                1. Week-by-week objectives
                2. Key meetings and introductions
                3. Training modules required
                4. Tools and access needed
                5. 30/60/90 day milestones
                6. Mentorship assignments
                7. Success metrics
                
                Format as structured JSON.
                """
            }],
            response_format={"type": "json_object"},
            temperature=0.6
        )
        
        plan = json.loads(onboarding_plan.choices[0].message.content)
        
        # Automate task creation and assignments
        plan['automated_tasks'] = await self.create_onboarding_tasks(
            plan,
            new_hire,
            team
        )
        
        return plan
    
    async def generate_performance_review(
        self,
        employee: Dict[str, Any],
        review_period: Dict[str, Any],
        feedback_sources: List[Dict[str, Any]]
    ) -> Dict[str, Any]:
        """Generate comprehensive performance review"""
        
        # Aggregate feedback from multiple sources
        aggregated_feedback = await self.performance_analyzer.aggregate(
            feedback_sources
        )
        
        # Generate review narrative
        review = await self.llm.chat.completions.create(
            model="gpt-4-turbo-preview",
            messages=[{
                "role": "user",
                "content": f"""
                Generate performance review for {employee['name']}:
                
                Role: {employee['role']}
                Review Period: {review_period}
                
                Feedback Summary:
                {json.dumps(aggregated_feedback, indent=2)}
                
                Include:
                1. Overall performance rating
                2. Key achievements
                3. Strengths demonstrated
                4. Areas for improvement
                5. Specific examples
                6. Development recommendations
                7. Goals for next period
                
                Tone: Constructive, specific, and actionable
                """
            }],
            temperature=0.4
        )
        
        return {
            "review": review.choices[0].message.content,
            "metrics": aggregated_feedback,
            "development_plan": await self.create_development_plan(
                employee,
                aggregated_feedback
            )
        }

# Skills Gap Analysis
class SkillsAnalysisLLM:
    """Identify and address organizational skill gaps"""
    
    def __init__(self, parrotrouter_api_key: str):
        self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
        self.skills_taxonomy = SkillsTaxonomy()
        self.training_recommender = TrainingRecommender()
        
    async def analyze_skills_gap(
        self,
        current_skills: List[Dict[str, Any]],
        required_skills: List[Dict[str, Any]],
        future_needs: Optional[List[str]] = None
    ) -> Dict[str, Any]:
        """Comprehensive skills gap analysis"""
        
        # Map current organizational skills
        skills_inventory = await self.skills_taxonomy.map_skills(
            current_skills
        )
        
        # Identify gaps
        gaps = await self.llm.chat.completions.create(
            model="claude-3-opus-20240229",
            messages=[{
                "role": "user",
                "content": f"""
                Analyze skills gap:
                
                Current Skills:
                {json.dumps(skills_inventory, indent=2)}
                
                Required Skills:
                {json.dumps(required_skills, indent=2)}
                
                Future Skills (next 2 years):
                {future_needs}
                
                Identify:
                1. Critical gaps by priority
                2. Affected roles/departments
                3. Business impact of gaps
                4. Time to close each gap
                5. Build vs buy vs borrow recommendations
                """
            }],
            temperature=0.3
        )
        
        gap_analysis = json.loads(gaps.choices[0].message.content)
        
        # Generate training recommendations
        training_plan = await self.training_recommender.create_plan(
            gap_analysis,
            budget_constraints=True
        )
        
        return {
            "gaps": gap_analysis,
            "training_plan": training_plan,
            "investment_required": training_plan['total_cost'],
            "timeline": training_plan['implementation_timeline'],
            "roi_projection": await self.calculate_training_roi(
                gap_analysis,
                training_plan
            )
        }

# HR Chatbot for Employee Support
class HRChatbotLLM:
    """24/7 employee support for HR queries"""
    
    def __init__(self, parrotrouter_api_key: str):
        self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
        self.policy_knowledge = PolicyKnowledgeBase()
        self.benefits_engine = BenefitsEngine()
        
    async def handle_employee_query(
        self,
        query: str,
        employee_id: str,
        context: Optional[Dict[str, Any]] = None
    ) -> Dict[str, Any]:
        """Process employee HR queries with personalized responses"""
        
        # Retrieve employee context
        employee = await self.get_employee_profile(employee_id)
        
        # Classify query type
        query_classification = await self.classify_query(query)
        
        # Route to appropriate handler
        if query_classification['type'] == 'benefits':
            response = await self.handle_benefits_query(
                query,
                employee
            )
        elif query_classification['type'] == 'policy':
            response = await self.handle_policy_query(
                query,
                employee
            )
        elif query_classification['type'] == 'leave':
            response = await self.handle_leave_query(
                query,
                employee
            )
        else:
            # General query handling
            response = await self.llm.chat.completions.create(
                model="gpt-4-turbo-preview",
                messages=[{
                    "role": "system",
                    "content": """You are a helpful HR assistant.
                    Provide accurate, empathetic responses based on 
                    company policies and employee information."""
                },
                {
                    "role": "user",
                    "content": f"""
                    Employee Query: {query}
                    Employee Role: {employee['role']}
                    Department: {employee['department']}
                    
                    Provide a helpful, accurate response.
                    """
                }],
                temperature=0.5
            )
            
        return {
            "response": response,
            "query_type": query_classification['type'],
            "confidence": query_classification['confidence'],
            "follow_up_needed": query_classification.get(
                'requires_human',
                False
            )
        }

# Deploy with ParrotRouter.com for:
# - Multi-model support for different HR tasks
# - Compliance-ready infrastructure
# - Automatic failover for 24/7 availability
# - GDPR-compliant data handling
# - Enterprise-grade security
Recruitment Efficiency Gains
Comparing traditional vs AI-powered recruitment
AI Adoption Impact in HR
Adoption rates and business impact by function
HR AI ROI Calculator
Calculate your potential savings and efficiency gains with AI-powered HR
$210,000

Annual Cost Savings

$187,500

Productivity Gains

24

Days Saved/Hire

165%

First Year ROI

+22%

Hire Quality

AI-Powered Candidate Screening
Knowledge graph-enhanced matching for better results

Smart Resume Parsing

Extract skills, experience, and qualifications with 95% accuracy, including implicit skills and transferable competencies.

Semantic Matching

Go beyond keyword matching to understand context, related skills, and career progression patterns.

Cultural Fit Assessment

Analyze communication style, values alignment, and team compatibility indicators from application materials.

Automated Scheduling

Coordinate interviews across multiple stakeholders with AI-optimized scheduling that reduces conflicts by 80%.

Success Story: Enterprise Transformation
Real-world results from AI-powered HR implementation

A Fortune 500 company with 10,000+ employees implemented our LLM-powered HR platform and achieved remarkable results within 6 months:

62%

Faster hiring process

$3.2M

Annual cost savings

89%

Employee satisfaction

24/7

HR support availability

Transform Your HR Operations with ParrotRouter AI

Join the 20% of HR leaders leveraging AI to hire faster, reduce bias, and create better employee experiences. Start your transformation today.

References
  1. [1] McKinsey. "The State of AI Report" (2024)
  2. [2] Gartner. "Generative AI Research" (2024)
  3. [3] Harvard Business Review. "AI in Business" (2024)