Context Window Optimization
Maximize LLM performance while minimizing costs by intelligently managing context windows. Reduce token usage by up to 70% without losing accuracy.
Dynamic Context Management
class ContextOptimizer: def __init__(self, max_tokens=8192): self.max_tokens = max_tokens self.compressor = TextCompressor() def optimize_context(self, messages, system_prompt): # Priority-based context selection essential_context = self.extract_essential(messages) # Compress verbose sections compressed = self.compressor.compress( essential_context, preserve_keywords=True ) # Sliding window for conversation history return self.apply_sliding_window( compressed, window_size=self.calculate_optimal_window() )
Compression Techniques
- Summarization of old messages
- Keyword extraction
- Redundancy removal
Cost Savings
70%
Average token reduction with intelligent compression
References
- [1] arXiv. "Efficient LLM Inference" (2024)
- [2] Hugging Face. "GPU Inference Optimization" (2024)
- [3] NVIDIA. "LLM Inference Optimization" (2024)