Context Window Optimization
Maximize LLM performance while minimizing costs by intelligently managing context windows. Reduce token usage by up to 70% without losing accuracy.
Dynamic Context Management
class ContextOptimizer:
def __init__(self, max_tokens=8192):
self.max_tokens = max_tokens
self.compressor = TextCompressor()
def optimize_context(self, messages, system_prompt):
# Priority-based context selection
essential_context = self.extract_essential(messages)
# Compress verbose sections
compressed = self.compressor.compress(
essential_context,
preserve_keywords=True
)
# Sliding window for conversation history
return self.apply_sliding_window(
compressed,
window_size=self.calculate_optimal_window()
)Compression Techniques
- Summarization of old messages
- Keyword extraction
- Redundancy removal
Cost Savings
70%
Average token reduction with intelligent compression
References
- [1] arXiv. "Efficient LLM Inference" (2024)
- [2] Hugging Face. "GPU Inference Optimization" (2024)
- [3] NVIDIA. "LLM Inference Optimization" (2024)