Infrastructure Scaling Guide

Scale your LLM infrastructure from prototype to production. Handle millions of requests with auto-scaling, global distribution, and cost optimization.

Scalable Architecture Pattern
# Kubernetes deployment for LLM services
apiVersion: apps/v1
kind: Deployment
metadata:
  name: llm-gateway
spec:
  replicas: 3
  selector:
    matchLabels:
      app: llm-gateway
  template:
    spec:
      containers:
      - name: gateway
        image: parrotrouter/gateway:latest
        resources:
          requests:
            memory: "4Gi"
            cpu: "2"
          limits:
            memory: "8Gi"
            cpu: "4"
        env:
        - name: CACHE_ENABLED
          value: "true"
        - name: MAX_CONCURRENT
          value: "1000"
References
  1. [1] arXiv. "Efficient LLM Inference" (2024)
  2. [2] Hugging Face. "GPU Inference Optimization" (2024)
  3. [3] NVIDIA. "LLM Inference Optimization" (2024)