LLM Token Usage Calculator

Calculate token usage and costs for your LLM API calls across different models

Interactive Token Calculator
Calculate token usage and costs for your LLM API calls

Characters: 0 | Estimated Tokens: 0

Characters: 0 | Estimated Tokens: 0

Or Enter Token Counts Manually

Calculation Results

Token Usage
Prompt Tokens:0
Completion Tokens:0
Total Tokens:0
Cost per Request
Prompt Cost:$0.0000
Completion Cost:$0.0000
Total:$0.0000
Projected Costs
Batch (1):$0.00
Daily (avg):$0.00
Monthly:$0.00
Understanding Tokens
How tokenization works across different models

Tokens are the fundamental units that language models process. Understanding tokenization is crucial for accurate cost estimation and optimization. According to Winder.AI's practical guide, different models use different tokenization methods.

Tokenizer Types

Tiktoken (OpenAI)

Uses byte pair encoding (BPE) specifically designed for GPT models. Different encodings for different models:

  • cl100k_base: GPT-4, GPT-3.5-turbo
  • p50k_base: Codex, text-davinci-002/003

SentencePiece

Used by models like Llama and T5. Can operate in BPE or unigram mode, often resulting in different token boundaries.

Llama, T5, mT5

GPT-2 Tokenizer

Legacy BPE tokenizer still used by some models. Available via Hugging Face transformers library.

GPT-2, Some open-source models

Token Estimation Rules

As noted in the LiteLLM documentation, when the exact tokenizer is unavailable:

  • English
    1 token ≈ 4 characters (0.75 words)
  • Code
    1 token ≈ 2-3 characters (more symbols)
  • Non-English
    1 token ≈ 2-3 characters (varies by language)
Model Pricing Breakdown
Current pricing for major LLM providers (prices per 1,000 tokens)
ModelInput PriceOutput Price1M Token Cost (50/50)
GPT-4 Turbo$0.0100$0.0300$20.00
GPT-4$0.0300$0.0600$45.00
GPT-3.5 Turbo$0.0005$0.0015$1.00
Claude 3 Opus$0.0150$0.0750$45.00
Claude 3 Sonnet$0.0030$0.0150$9.00
Claude 3 Haiku$0.0003$0.0013$0.75
Gemini Pro$0.0003$0.0005$0.38
Llama 3 70B$0.0008$0.0008$0.80
Mistral Large$0.0080$0.0240$16.00
Token Optimization Strategies
Reduce costs by optimizing token usage

1. Prompt Engineering

According to LangChain's token tracking guide, concise prompts can significantly reduce costs:

❌ "Can you please help me understand what the weather will be like tomorrow in New York City?"
✅ "Weather forecast NYC tomorrow"

2. Context Management

  • • Summarize long conversations instead of including full history
  • • Remove unnecessary metadata and formatting
  • • Use reference IDs instead of repeating full context

3. Response Control

  • • Set appropriate max_tokens limits
  • • Use stop sequences to prevent over-generation
  • • Request specific formats (e.g., "Answer in 2-3 sentences")

4. Model Selection

Choose the right model for your use case. As shown in the pricing table, GPT-3.5 Turbo costs ~60x less than GPT-4 per token.

Implementation Guide
Code examples for token counting and cost calculation

Python Implementation with Tiktoken

import tiktoken
import json

class TokenCalculator:
    def __init__(self, model="gpt-3.5-turbo"):
        self.model = model
        self.encoding = tiktoken.encoding_for_model(model)
        
        # Pricing per 1K tokens (update as needed)
        self.pricing = {
            "gpt-4": {"input": 0.03, "output": 0.06},
            "gpt-3.5-turbo": {"input": 0.0005, "output": 0.0015},
            "gpt-4-turbo": {"input": 0.01, "output": 0.03}
        }
    
    def count_tokens(self, text):
        """Count tokens in text"""
        return len(self.encoding.encode(text))
    
    def calculate_cost(self, prompt, completion):
        """Calculate cost for a request"""
        prompt_tokens = self.count_tokens(prompt)
        completion_tokens = self.count_tokens(completion)
        
        prices = self.pricing.get(self.model, self.pricing["gpt-3.5-turbo"])
        
        prompt_cost = (prompt_tokens / 1000) * prices["input"]
        completion_cost = (completion_tokens / 1000) * prices["output"]
        
        return {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "total_tokens": prompt_tokens + completion_tokens,
            "prompt_cost": prompt_cost,
            "completion_cost": completion_cost,
            "total_cost": prompt_cost + completion_cost
        }

# Usage
calculator = TokenCalculator("gpt-3.5-turbo")
result = calculator.calculate_cost(
    prompt="Explain quantum computing",
    completion="Quantum computing uses quantum bits..."
)
print(json.dumps(result, indent=2))

Source: Adapted from OpenAI's tiktoken library

JavaScript/TypeScript Implementation

// Using js-tiktoken library
import { getEncoding } from 'js-tiktoken'

class TokenCalculator {
  private encoding: any
  private pricing = {
    'gpt-4': { input: 0.03, output: 0.06 },
    'gpt-3.5-turbo': { input: 0.0005, output: 0.0015 },
    'claude-3-sonnet': { input: 0.003, output: 0.015 }
  }

  constructor(private model: string = 'gpt-3.5-turbo') {
    // For GPT models, use cl100k_base encoding
    this.encoding = getEncoding('cl100k_base')
  }

  countTokens(text: string): number {
    return this.encoding.encode(text).length
  }

  calculateCost(prompt: string, completion: string) {
    const promptTokens = this.countTokens(prompt)
    const completionTokens = this.countTokens(completion)
    
    const prices = this.pricing[this.model] || this.pricing['gpt-3.5-turbo']
    
    const promptCost = (promptTokens / 1000) * prices.input
    const completionCost = (completionTokens / 1000) * prices.output
    
    return {
      promptTokens,
      completionTokens,
      totalTokens: promptTokens + completionTokens,
      promptCost: parseFloat(promptCost.toFixed(6)),
      completionCost: parseFloat(completionCost.toFixed(6)),
      totalCost: parseFloat((promptCost + completionCost).toFixed(6))
    }
  }
  
  // Batch calculation
  calculateBatchCost(requests: Array<{prompt: string, completion: string}>) {
    return requests.reduce((acc, req) => {
      const cost = this.calculateCost(req.prompt, req.completion)
      return {
        totalTokens: acc.totalTokens + cost.totalTokens,
        totalCost: acc.totalCost + cost.totalCost
      }
    }, { totalTokens: 0, totalCost: 0 })
  }
}

// Usage
const calculator = new TokenCalculator('gpt-3.5-turbo')
const result = calculator.calculateCost(
  'What is machine learning?',
  'Machine learning is a subset of AI...'
)
console.log(result)
Batch Processing Cost Calculations
Optimize costs when processing multiple requests

According to the LiteLLM documentation, batch processing can significantly reduce overhead and improve cost efficiency.

Batch Cost Formula

total_prompt_tokens = sum(request.prompt_tokens for request in batch)
total_completion_tokens = sum(request.completion_tokens for request in batch)
total_cost = (total_prompt_tokens × input_price + total_completion_tokens × output_price) / 1000

Batch Optimization Strategies

Combine Similar Requests

Group similar prompts and process them together to reduce API call overhead.

Use Cheaper Models for Preprocessing

Use GPT-3.5 Turbo for initial processing, then GPT-4 only for complex tasks.

Example: Batch Processing 100 Customer Queries

Processing 100 customer support queries:

  • • Average prompt: 150 tokens
  • • Average response: 300 tokens
  • • Total prompt tokens: 15,000
  • • Total completion tokens: 30,000

Cost Comparison:

GPT-3.5 Turbo: $0.05 = $0.05
GPT-4: $2.25 = $2.25
Savings: $2.20 (98% reduction)
Cost Tracking Implementation
Monitor and track your LLM API costs in production

Real-time Cost Tracking

class CostTracker:
    def __init__(self):
        self.daily_usage = {}
        self.monthly_usage = {}
        
    def track_request(self, model, prompt_tokens, completion_tokens, cost):
        """Track individual request costs"""
        today = datetime.now().strftime("%Y-%m-%d")
        month = datetime.now().strftime("%Y-%m")
        
        # Daily tracking
        if today not in self.daily_usage:
            self.daily_usage[today] = {
                "requests": 0,
                "total_tokens": 0,
                "total_cost": 0,
                "by_model": {}
            }
        
        self.daily_usage[today]["requests"] += 1
        self.daily_usage[today]["total_tokens"] += prompt_tokens + completion_tokens
        self.daily_usage[today]["total_cost"] += cost
        
        # Model-specific tracking
        if model not in self.daily_usage[today]["by_model"]:
            self.daily_usage[today]["by_model"][model] = {
                "requests": 0,
                "tokens": 0,
                "cost": 0
            }
        
        self.daily_usage[today]["by_model"][model]["requests"] += 1
        self.daily_usage[today]["by_model"][model]["tokens"] += prompt_tokens + completion_tokens
        self.daily_usage[today]["by_model"][model]["cost"] += cost
    
    def get_daily_report(self, date=None):
        """Get usage report for a specific day"""
        if date is None:
            date = datetime.now().strftime("%Y-%m-%d")
        
        return self.daily_usage.get(date, {
            "requests": 0,
            "total_tokens": 0,
            "total_cost": 0,
            "by_model": {}
        })
    
    def get_cost_alerts(self, daily_limit=100, monthly_limit=3000):
        """Check if costs exceed limits"""
        today = datetime.now().strftime("%Y-%m-%d")
        month = datetime.now().strftime("%Y-%m")
        
        daily_cost = self.daily_usage.get(today, {}).get("total_cost", 0)
        monthly_cost = sum(day.get("total_cost", 0) for day in self.daily_usage.values()
                          if day.startswith(month))
        
        alerts = []
        if daily_cost > daily_limit:
            alerts.append(f"Daily cost (${daily_cost:.2f}) exceeds limit (${daily_limit})")
        if monthly_cost > monthly_limit:
            alerts.append(f"Monthly cost (${monthly_cost:.2f}) exceeds limit (${monthly_limit})")
        
        return alerts

Integration with Monitoring Services

As recommended in LangChain's monitoring guide, integrate with observability platforms:

Prometheus Metrics

Export token usage and costs as Prometheus metrics for Grafana dashboards

CloudWatch/Datadog

Send custom metrics to cloud monitoring services with cost alerts

Database Logging

Store detailed usage logs for historical analysis and billing

References
Additional resources for token calculation and cost optimization

Token Calculation Tools

Cost Optimization Resources

ParrotRouter Resources