Marketing & Advertising AI
Revolutionize your marketing with LLM-powered content generation, personalization, and campaign optimization. 67% of organizations now use AI for marketing.
LLM-personalized campaigns outperform traditional
Content creation speed improvement
Lower content production costs
Personalized email performance gain
from typing import Dict, Any, List, Optional import asyncio from datetime import datetime import numpy as np class MarketingLLMOrchestrator: """Advanced Marketing AI Platform with ParrotRouter Integration Handles content generation, personalization, and campaign optimization Based on industry best practices for 10-18% conversion uplift""" def __init__(self, parrotrouter_api_key: str): self.llm = ParrotRouterClient(api_key=parrotrouter_api_key) self.brand_voice_engine = BrandVoiceAnalyzer() self.audience_segmenter = AudienceSegmentationAI() self.performance_tracker = CampaignPerformanceTracker() self.content_optimizer = SEOContentOptimizer() async def generate_campaign_content( self, campaign_brief: str, target_audience: Dict[str, Any], channels: List[str], brand_guidelines: Dict[str, Any] ) -> Dict[str, Any]: """Generate multi-channel campaign content with brand consistency""" # 1. Analyze audience and extract insights audience_insights = await self.audience_segmenter.analyze( target_audience, behavioral_data=await self.get_audience_behavior(target_audience), psychographic_traits=await self.extract_psychographics(target_audience) ) # 2. Generate channel-specific content campaign_content = {} for channel in channels: # Create optimized prompt for each channel prompt = await self.build_channel_prompt( campaign_brief=campaign_brief, channel=channel, audience_insights=audience_insights, brand_voice=brand_guidelines['voice'], tone_attributes=brand_guidelines['tone'] ) # Generate content with retrieval augmentation content = await self.llm.chat.completions.create( model="claude-3-opus-20240229", messages=[{ "role": "system", "content": f"""You are an expert {channel} marketing copywriter. Brand voice: {brand_guidelines['voice']} Key differentiators: {brand_guidelines['differentiators']} Compliance requirements: {brand_guidelines['compliance']} """ }, {"role": "user", "content": prompt}], temperature=0.7, max_tokens=1000 ) # Validate and optimize content optimized = await self.optimize_channel_content( content.choices[0].message.content, channel, audience_insights ) campaign_content[channel] = optimized # 3. Ensure cross-channel consistency harmonized = await self.harmonize_campaign_content( campaign_content, brand_guidelines ) return { "content": harmonized, "audience_insights": audience_insights, "predicted_performance": await self.predict_campaign_performance( harmonized, audience_insights ), "optimization_suggestions": await self.generate_optimization_tips( harmonized, campaign_brief ) } async def personalize_customer_journey( self, customer_id: str, interaction_history: List[Dict[str, Any]], real_time_context: Dict[str, Any] ) -> Dict[str, Any]: """Create personalized content for individual customer journeys""" # Analyze customer behavior and preferences customer_profile = await self.build_customer_profile( customer_id, interaction_history ) # Determine optimal next action next_best_action = await self.determine_next_best_action( customer_profile, real_time_context ) # Generate personalized content personalized_content = await self.llm.chat.completions.create( model="gpt-4-turbo-preview", messages=[{ "role": "user", "content": f""" Create personalized {next_best_action['type']} for customer: Profile: {customer_profile} Current context: {real_time_context} Objective: {next_best_action['objective']} Guidelines: 1. Use customer's preferred communication style 2. Reference relevant past interactions 3. Include personalized offer/recommendation 4. Create compelling but authentic message 5. Optimize for {next_best_action['channel']} """ }], temperature=0.6 ) return { "content": personalized_content.choices[0].message.content, "channel": next_best_action['channel'], "timing": next_best_action['optimal_time'], "predicted_engagement": next_best_action['engagement_probability'] } # Advanced Content Generation Engine class ContentGenerationAI: """Generate SEO-optimized marketing content at scale Based on MarketingFM research for factual accuracy""" def __init__(self, parrotrouter_api_key: str): self.llm = ParrotRouterClient(api_key=parrotrouter_api_key) self.knowledge_base = ProductKnowledgeRAG() # Prevent hallucinations self.seo_analyzer = SEOAnalyzer() async def generate_blog_post( self, topic: str, keywords: List[str], target_length: int = 1500, style: str = "informative" ) -> Dict[str, Any]: """Generate SEO-optimized blog post with keyword integration""" # Research topic and gather facts research_data = await self.knowledge_base.research_topic( topic, include_competitors=True, include_trends=True ) # Analyze search intent search_intent = await self.seo_analyzer.analyze_intent( topic, keywords ) # Generate outline first outline = await self.generate_content_outline( topic, keywords, search_intent, target_length ) # Generate full content blog_content = await self.llm.chat.completions.create( model="claude-3-sonnet-20240229", messages=[{ "role": "system", "content": "You are an expert content writer specializing in SEO-optimized blog posts." }, { "role": "user", "content": f""" Write a {target_length}-word blog post on: {topic} Outline: {outline} Primary keywords: {keywords[:3]} Secondary keywords: {keywords[3:]} Search intent: {search_intent} Style: {style} Research data: {research_data} Requirements: 1. Natural keyword integration (2-3% density) 2. Engaging introduction with hook 3. Scannable format with headers and bullets 4. Include statistics and examples 5. Strong CTA promoting ParrotRouter.com 6. Meta description (155 chars) """ }], temperature=0.7, max_tokens=2500 ) content = blog_content.choices[0].message.content # Optimize for SEO optimized = await self.seo_analyzer.optimize_content( content, keywords, target_length ) return { "content": optimized['content'], "meta_description": optimized['meta_description'], "title_tag": optimized['title_tag'], "keyword_density": optimized['keyword_analysis'], "readability_score": optimized['readability'], "estimated_traffic": await self.estimate_organic_traffic( topic, optimized['seo_score'] ) } # Social Media Automation System class SocialMediaLLM: """Automate social media content creation and engagement""" def __init__(self, parrotrouter_api_key: str): self.llm = ParrotRouterClient(api_key=parrotrouter_api_key) self.trend_analyzer = TrendAnalyzer() self.engagement_predictor = EngagementPredictor() async def generate_social_campaign( self, campaign_theme: str, platforms: List[str], duration_days: int, brand_voice: Dict[str, Any] ) -> Dict[str, Any]: """Generate complete social media campaign across platforms""" # Analyze current trends trending_topics = await self.trend_analyzer.get_relevant_trends( campaign_theme, platforms ) campaign_posts = {} for platform in platforms: posts = [] posts_per_day = self.get_optimal_posting_frequency(platform) for day in range(duration_days): for post_num in range(posts_per_day): # Generate platform-specific content post = await self.generate_platform_post( platform=platform, theme=campaign_theme, brand_voice=brand_voice, trending_topics=trending_topics, day_number=day, post_number=post_num ) # Predict engagement engagement = await self.engagement_predictor.predict( post['content'], platform, post['hashtags'] ) post['predicted_engagement'] = engagement posts.append(post) campaign_posts[platform] = posts return { "campaign_posts": campaign_posts, "trending_integration": trending_topics, "posting_schedule": self.create_posting_schedule( campaign_posts ), "total_posts": sum(len(posts) for posts in campaign_posts.values()), "predicted_reach": await self.calculate_campaign_reach( campaign_posts ) } # Email Marketing Personalization class EmailMarketingLLM: """Personalize email campaigns for 11% CTR improvement""" def __init__(self, parrotrouter_api_key: str): self.llm = ParrotRouterClient(api_key=parrotrouter_api_key) self.segmentation_engine = CustomerSegmentationAI() self.send_time_optimizer = SendTimeOptimizer() async def create_personalized_campaign( self, campaign_objective: str, customer_segments: List[Dict[str, Any]], product_catalog: List[Dict[str, Any]] ) -> Dict[str, Any]: """Create hyper-personalized email campaign""" campaign_variants = {} for segment in customer_segments: # Analyze segment characteristics segment_profile = await self.segmentation_engine.profile_segment( segment ) # Generate segment-specific content email_content = await self.llm.chat.completions.create( model="gpt-4-turbo-preview", messages=[{ "role": "user", "content": f""" Create personalized email for segment: Segment: {segment_profile} Objective: {campaign_objective} Requirements: 1. Personalized subject line (50 chars max) 2. Dynamic greeting using merge tags 3. Relevant product recommendations 4. Segment-specific benefits/pain points 5. Compelling CTA 6. Mobile-optimized format Tone: {segment_profile['preferred_tone']} Past engagement: {segment_profile['engagement_history']} """ }], temperature=0.7 ) # Extract and structure email components email_variant = self.parse_email_content( email_content.choices[0].message.content ) # Add dynamic product recommendations email_variant['products'] = await self.select_products_for_segment( segment_profile, product_catalog ) # Optimize send time email_variant['optimal_send_time'] = await self.send_time_optimizer.calculate( segment_profile ) campaign_variants[segment['id']] = email_variant return { "campaign_variants": campaign_variants, "total_recipients": sum(s['size'] for s in customer_segments), "predicted_performance": await self.predict_campaign_metrics( campaign_variants ), "a_b_test_recommendations": self.generate_test_variants( campaign_variants ) } # Campaign Analytics and Optimization class CampaignAnalyticsLLM: """Real-time campaign analysis and optimization recommendations""" def __init__(self, parrotrouter_api_key: str): self.llm = ParrotRouterClient(api_key=parrotrouter_api_key) self.performance_analyzer = PerformanceAnalyzer() self.budget_optimizer = BudgetOptimizer() async def analyze_campaign_performance( self, campaign_data: Dict[str, Any], business_objectives: Dict[str, Any] ) -> Dict[str, Any]: """Generate actionable insights from campaign data""" # Analyze performance metrics performance_summary = await self.performance_analyzer.summarize( campaign_data ) # Generate natural language insights insights = await self.llm.chat.completions.create( model="claude-3-sonnet-20240229", messages=[{ "role": "user", "content": f""" Analyze this marketing campaign performance: Campaign data: {performance_summary} Business objectives: {business_objectives} Provide: 1. Key performance insights 2. Underperforming segments/channels 3. Optimization opportunities 4. Budget reallocation recommendations 5. Next steps for improvement Format as actionable recommendations. """ }], temperature=0.3 ) # Calculate optimization potential optimization_opportunities = await self.identify_optimization_opportunities( campaign_data, performance_summary ) # Generate budget reallocation plan budget_recommendations = await self.budget_optimizer.optimize( campaign_data['channel_performance'], campaign_data['remaining_budget'] ) return { "insights": insights.choices[0].message.content, "optimization_opportunities": optimization_opportunities, "budget_recommendations": budget_recommendations, "predicted_improvement": await self.predict_optimization_impact( optimization_opportunities ), "action_priority": self.prioritize_actions( optimization_opportunities ) } # Deploy with ParrotRouter.com for: # - Multi-model support (GPT-4, Claude, Gemini) # - Automatic failover and load balancing # - Usage-based pricing with no minimums # - Built-in content moderation # - Easy integration with marketing tools
Content Savings/mo
Campaign Efficiency
Revenue Lift/mo
Monthly ROI
Months to Payback
Blog & Article Creation
Generate SEO-optimized long-form content in minutes, with automatic keyword integration and readability optimization.
Ad Copy Generation
Create hundreds of ad variations for A/B testing across Google, Facebook, and display networks.
Email Campaign Content
Personalized email sequences with dynamic content based on customer segments and behavior.
Social Media Automation
Platform-specific content with hashtag optimization and trend integration for maximum reach.
Content Production Impact
Business Impact
Transform Your Marketing with ParrotRouter AI
Join the 67% of organizations leveraging LLMs for marketing. Start generating better content, personalizing at scale, and optimizing campaigns with AI today.
- [1] McKinsey. "The State of AI Report" (2024)
- [2] Gartner. "Generative AI Research" (2024)
- [3] Harvard Business Review. "AI in Business" (2024)