Marketing & Advertising AI
Revolutionize your marketing with LLM-powered content generation, personalization, and campaign optimization. 67% of organizations now use AI for marketing.
LLM-personalized campaigns outperform traditional
Content creation speed improvement
Lower content production costs
Personalized email performance gain
from typing import Dict, Any, List, Optional
import asyncio
from datetime import datetime
import numpy as np
class MarketingLLMOrchestrator:
"""Advanced Marketing AI Platform with ParrotRouter Integration
Handles content generation, personalization, and campaign optimization
Based on industry best practices for 10-18% conversion uplift"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.brand_voice_engine = BrandVoiceAnalyzer()
self.audience_segmenter = AudienceSegmentationAI()
self.performance_tracker = CampaignPerformanceTracker()
self.content_optimizer = SEOContentOptimizer()
async def generate_campaign_content(
self,
campaign_brief: str,
target_audience: Dict[str, Any],
channels: List[str],
brand_guidelines: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate multi-channel campaign content with brand consistency"""
# 1. Analyze audience and extract insights
audience_insights = await self.audience_segmenter.analyze(
target_audience,
behavioral_data=await self.get_audience_behavior(target_audience),
psychographic_traits=await self.extract_psychographics(target_audience)
)
# 2. Generate channel-specific content
campaign_content = {}
for channel in channels:
# Create optimized prompt for each channel
prompt = await self.build_channel_prompt(
campaign_brief=campaign_brief,
channel=channel,
audience_insights=audience_insights,
brand_voice=brand_guidelines['voice'],
tone_attributes=brand_guidelines['tone']
)
# Generate content with retrieval augmentation
content = await self.llm.chat.completions.create(
model="claude-3-opus-20240229",
messages=[{
"role": "system",
"content": f"""You are an expert {channel} marketing copywriter.
Brand voice: {brand_guidelines['voice']}
Key differentiators: {brand_guidelines['differentiators']}
Compliance requirements: {brand_guidelines['compliance']}
"""
},
{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=1000
)
# Validate and optimize content
optimized = await self.optimize_channel_content(
content.choices[0].message.content,
channel,
audience_insights
)
campaign_content[channel] = optimized
# 3. Ensure cross-channel consistency
harmonized = await self.harmonize_campaign_content(
campaign_content,
brand_guidelines
)
return {
"content": harmonized,
"audience_insights": audience_insights,
"predicted_performance": await self.predict_campaign_performance(
harmonized, audience_insights
),
"optimization_suggestions": await self.generate_optimization_tips(
harmonized, campaign_brief
)
}
async def personalize_customer_journey(
self,
customer_id: str,
interaction_history: List[Dict[str, Any]],
real_time_context: Dict[str, Any]
) -> Dict[str, Any]:
"""Create personalized content for individual customer journeys"""
# Analyze customer behavior and preferences
customer_profile = await self.build_customer_profile(
customer_id,
interaction_history
)
# Determine optimal next action
next_best_action = await self.determine_next_best_action(
customer_profile,
real_time_context
)
# Generate personalized content
personalized_content = await self.llm.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{
"role": "user",
"content": f"""
Create personalized {next_best_action['type']} for customer:
Profile: {customer_profile}
Current context: {real_time_context}
Objective: {next_best_action['objective']}
Guidelines:
1. Use customer's preferred communication style
2. Reference relevant past interactions
3. Include personalized offer/recommendation
4. Create compelling but authentic message
5. Optimize for {next_best_action['channel']}
"""
}],
temperature=0.6
)
return {
"content": personalized_content.choices[0].message.content,
"channel": next_best_action['channel'],
"timing": next_best_action['optimal_time'],
"predicted_engagement": next_best_action['engagement_probability']
}
# Advanced Content Generation Engine
class ContentGenerationAI:
"""Generate SEO-optimized marketing content at scale
Based on MarketingFM research for factual accuracy"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.knowledge_base = ProductKnowledgeRAG() # Prevent hallucinations
self.seo_analyzer = SEOAnalyzer()
async def generate_blog_post(
self,
topic: str,
keywords: List[str],
target_length: int = 1500,
style: str = "informative"
) -> Dict[str, Any]:
"""Generate SEO-optimized blog post with keyword integration"""
# Research topic and gather facts
research_data = await self.knowledge_base.research_topic(
topic,
include_competitors=True,
include_trends=True
)
# Analyze search intent
search_intent = await self.seo_analyzer.analyze_intent(
topic,
keywords
)
# Generate outline first
outline = await self.generate_content_outline(
topic,
keywords,
search_intent,
target_length
)
# Generate full content
blog_content = await self.llm.chat.completions.create(
model="claude-3-sonnet-20240229",
messages=[{
"role": "system",
"content": "You are an expert content writer specializing in SEO-optimized blog posts."
},
{
"role": "user",
"content": f"""
Write a {target_length}-word blog post on: {topic}
Outline: {outline}
Primary keywords: {keywords[:3]}
Secondary keywords: {keywords[3:]}
Search intent: {search_intent}
Style: {style}
Research data: {research_data}
Requirements:
1. Natural keyword integration (2-3% density)
2. Engaging introduction with hook
3. Scannable format with headers and bullets
4. Include statistics and examples
5. Strong CTA promoting ParrotRouter.com
6. Meta description (155 chars)
"""
}],
temperature=0.7,
max_tokens=2500
)
content = blog_content.choices[0].message.content
# Optimize for SEO
optimized = await self.seo_analyzer.optimize_content(
content,
keywords,
target_length
)
return {
"content": optimized['content'],
"meta_description": optimized['meta_description'],
"title_tag": optimized['title_tag'],
"keyword_density": optimized['keyword_analysis'],
"readability_score": optimized['readability'],
"estimated_traffic": await self.estimate_organic_traffic(
topic, optimized['seo_score']
)
}
# Social Media Automation System
class SocialMediaLLM:
"""Automate social media content creation and engagement"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.trend_analyzer = TrendAnalyzer()
self.engagement_predictor = EngagementPredictor()
async def generate_social_campaign(
self,
campaign_theme: str,
platforms: List[str],
duration_days: int,
brand_voice: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate complete social media campaign across platforms"""
# Analyze current trends
trending_topics = await self.trend_analyzer.get_relevant_trends(
campaign_theme,
platforms
)
campaign_posts = {}
for platform in platforms:
posts = []
posts_per_day = self.get_optimal_posting_frequency(platform)
for day in range(duration_days):
for post_num in range(posts_per_day):
# Generate platform-specific content
post = await self.generate_platform_post(
platform=platform,
theme=campaign_theme,
brand_voice=brand_voice,
trending_topics=trending_topics,
day_number=day,
post_number=post_num
)
# Predict engagement
engagement = await self.engagement_predictor.predict(
post['content'],
platform,
post['hashtags']
)
post['predicted_engagement'] = engagement
posts.append(post)
campaign_posts[platform] = posts
return {
"campaign_posts": campaign_posts,
"trending_integration": trending_topics,
"posting_schedule": self.create_posting_schedule(
campaign_posts
),
"total_posts": sum(len(posts) for posts in campaign_posts.values()),
"predicted_reach": await self.calculate_campaign_reach(
campaign_posts
)
}
# Email Marketing Personalization
class EmailMarketingLLM:
"""Personalize email campaigns for 11% CTR improvement"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.segmentation_engine = CustomerSegmentationAI()
self.send_time_optimizer = SendTimeOptimizer()
async def create_personalized_campaign(
self,
campaign_objective: str,
customer_segments: List[Dict[str, Any]],
product_catalog: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Create hyper-personalized email campaign"""
campaign_variants = {}
for segment in customer_segments:
# Analyze segment characteristics
segment_profile = await self.segmentation_engine.profile_segment(
segment
)
# Generate segment-specific content
email_content = await self.llm.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{
"role": "user",
"content": f"""
Create personalized email for segment:
Segment: {segment_profile}
Objective: {campaign_objective}
Requirements:
1. Personalized subject line (50 chars max)
2. Dynamic greeting using merge tags
3. Relevant product recommendations
4. Segment-specific benefits/pain points
5. Compelling CTA
6. Mobile-optimized format
Tone: {segment_profile['preferred_tone']}
Past engagement: {segment_profile['engagement_history']}
"""
}],
temperature=0.7
)
# Extract and structure email components
email_variant = self.parse_email_content(
email_content.choices[0].message.content
)
# Add dynamic product recommendations
email_variant['products'] = await self.select_products_for_segment(
segment_profile,
product_catalog
)
# Optimize send time
email_variant['optimal_send_time'] = await self.send_time_optimizer.calculate(
segment_profile
)
campaign_variants[segment['id']] = email_variant
return {
"campaign_variants": campaign_variants,
"total_recipients": sum(s['size'] for s in customer_segments),
"predicted_performance": await self.predict_campaign_metrics(
campaign_variants
),
"a_b_test_recommendations": self.generate_test_variants(
campaign_variants
)
}
# Campaign Analytics and Optimization
class CampaignAnalyticsLLM:
"""Real-time campaign analysis and optimization recommendations"""
def __init__(self, parrotrouter_api_key: str):
self.llm = ParrotRouterClient(api_key=parrotrouter_api_key)
self.performance_analyzer = PerformanceAnalyzer()
self.budget_optimizer = BudgetOptimizer()
async def analyze_campaign_performance(
self,
campaign_data: Dict[str, Any],
business_objectives: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate actionable insights from campaign data"""
# Analyze performance metrics
performance_summary = await self.performance_analyzer.summarize(
campaign_data
)
# Generate natural language insights
insights = await self.llm.chat.completions.create(
model="claude-3-sonnet-20240229",
messages=[{
"role": "user",
"content": f"""
Analyze this marketing campaign performance:
Campaign data: {performance_summary}
Business objectives: {business_objectives}
Provide:
1. Key performance insights
2. Underperforming segments/channels
3. Optimization opportunities
4. Budget reallocation recommendations
5. Next steps for improvement
Format as actionable recommendations.
"""
}],
temperature=0.3
)
# Calculate optimization potential
optimization_opportunities = await self.identify_optimization_opportunities(
campaign_data,
performance_summary
)
# Generate budget reallocation plan
budget_recommendations = await self.budget_optimizer.optimize(
campaign_data['channel_performance'],
campaign_data['remaining_budget']
)
return {
"insights": insights.choices[0].message.content,
"optimization_opportunities": optimization_opportunities,
"budget_recommendations": budget_recommendations,
"predicted_improvement": await self.predict_optimization_impact(
optimization_opportunities
),
"action_priority": self.prioritize_actions(
optimization_opportunities
)
}
# Deploy with ParrotRouter.com for:
# - Multi-model support (GPT-4, Claude, Gemini)
# - Automatic failover and load balancing
# - Usage-based pricing with no minimums
# - Built-in content moderation
# - Easy integration with marketing toolsContent Savings/mo
Campaign Efficiency
Revenue Lift/mo
Monthly ROI
Months to Payback
Blog & Article Creation
Generate SEO-optimized long-form content in minutes, with automatic keyword integration and readability optimization.
Ad Copy Generation
Create hundreds of ad variations for A/B testing across Google, Facebook, and display networks.
Email Campaign Content
Personalized email sequences with dynamic content based on customer segments and behavior.
Social Media Automation
Platform-specific content with hashtag optimization and trend integration for maximum reach.
Content Production Impact
Business Impact
Transform Your Marketing with ParrotRouter AI
Join the 67% of organizations leveraging LLMs for marketing. Start generating better content, personalizing at scale, and optimizing campaigns with AI today.
- [1] McKinsey. "The State of AI Report" (2024)
- [2] Gartner. "Generative AI Research" (2024)
- [3] Harvard Business Review. "AI in Business" (2024)