AI/LLM Monthly Budget Planner

Plan, track, and optimize your monthly AI spending with intelligent budget management

Budget Configuration
Set up your monthly AI spending limits and allocation
$12,500
80%
Budget Breakdown by Category
API Costs
$8,000 (53.3%)
Infrastructure
$3,000 (20.0%)
Support
$1,500 (10.0%)
Development
$2,500 (16.7%)
Team Budget Allocation
Track spending by team and enforce limits

Engineering

80% used
15 users

$4,800 / $6,000

Customer Success

80% used
8 users

$3,200 / $4,000

Product

90% used
5 users

$2,700 / $3,000

Marketing

90% used
4 users

$1,800 / $2,000

Budget Status
83.3%
Monthly Budget$15,000
Current Spend$12,500
Remaining$2,500
Projected Monthly$0
Model Usage Distribution
Budget Best Practices

Set Hard Limits

Enforce API quotas per team to prevent overruns

Monitor Daily

Track spending trends to catch anomalies early

Plan for Growth

Include 20-30% buffer for usage spikes

Historical Spend Analysis
Track your monthly spending trends and projections
Implement Budget Monitoring
Python code for tracking and alerting on budget usage.Learn more about cost tracking
# Budget Monitoring Setup
import requests
from datetime import datetime

class LLMBudgetMonitor:
    def __init__(self, monthly_budget, alert_threshold=0.8):
        self.monthly_budget = monthly_budget
        self.alert_threshold = alert_threshold
        self.current_spend = 0
        self.alerts_enabled = True
        
    def track_api_call(self, model, tokens, cost):
        """Track each API call and cost"""
        self.current_spend += cost
        
        # Check if approaching budget limit
        utilization = self.current_spend / self.monthly_budget
        
        if utilization > self.alert_threshold and self.alerts_enabled:
            self.send_budget_alert(utilization)
            
        if utilization > 1.0:
            self.enforce_budget_limit()
            
    def send_budget_alert(self, utilization):
        """Send alert when approaching budget"""
        message = f"Budget Alert: {utilization*100:.1f}% of monthly budget used"
        # Send to Slack, email, etc.
        print(f"⚠️ {message}")
        
    def enforce_budget_limit(self):
        """Enforce hard budget limits"""
        # Implement rate limiting or service suspension
        raise Exception("Monthly budget exceeded!")
        
    def get_budget_report(self):
        """Generate budget utilization report"""
        return {
            "budget": self.monthly_budget,
            "spent": self.current_spend,
            "remaining": self.monthly_budget - self.current_spend,
            "utilization": (self.current_spend / self.monthly_budget) * 100,
            "projected_monthly": self.project_monthly_spend()
        }
        
    def project_monthly_spend(self):
        """Project total monthly spend based on current rate"""
        today = datetime.now()
        days_passed = today.day
        days_in_month = 30  # Simplified
        
        daily_rate = self.current_spend / days_passed
        return daily_rate * days_in_month

# Usage
monitor = LLMBudgetMonitor(monthly_budget=15000, alert_threshold=0.8)

# Track API calls
monitor.track_api_call("gpt-4", tokens=1000, cost=0.03)
monitor.track_api_call("gpt-3.5-turbo", tokens=5000, cost=0.0075)

# Get report
report = monitor.get_budget_report()
print(f"Budget Status: ${report['spent']:.2f} / ${report['budget']:.2f}")
print(f"Projected Monthly: ${report['projected_monthly']:.2f}")

Take Control of Your AI Spending

ParrotRouter provides built-in budget management, real-time alerts, and detailed cost analytics. Never exceed your AI budget again with intelligent spending controls.

References
  1. [1] OpenAI. "Pricing Calculator" (2024)
  2. [2] Anthropic. "Claude Pricing" (2024)
  3. [3] AWS. "Amazon Bedrock Pricing" (2024)