Quickstart
Get up and running with ParrotRouter in under 5 minutes. Access 100+ AI models through a single API.
1. Get Your API Key
First, create a free account and generate your API key from the dashboard.
Keep your API key secure and never expose it in client-side code.
2. Install the SDK
Choose your preferred language and install the SDK:
Pythonbash
pip install openai
Node.jsbash
npm install openai
3. Make Your First Request
Here's how to generate your first AI response:
Pythonpython
from openai import OpenAI
client = OpenAI(
base_url="https://api.parrotrouter.com/v1",
api_key="your-api-key-here"
)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "user", "content": "Hello, AI!"}
]
)
print(response.choices[0].message.content)
TypeScripttypescript
import OpenAI from 'openai';
const client = new OpenAI({
baseURL: 'https://api.parrotrouter.com/v1',
apiKey: 'your-api-key-here',
});
const response = await client.chat.completions.create({
model: 'gpt-4',
messages: [
{ role: 'user', content: 'Hello, AI!' }
],
});
console.log(response.choices[0].message.content);
cURLbash
curl https://api.parrotrouter.com/v1/chat/completions \
-H "Authorization: Bearer your-api-key-here" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Hello, AI!"}
]
}'
4. Try Different Models
ParrotRouter supports models from multiple providers. Simply change the model parameter:
Using Different Modelspython
# OpenAI GPT-4
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Explain quantum computing"}]
)
# Anthropic Claude
response = client.chat.completions.create(
model="claude-3-opus-20240229",
messages=[{"role": "user", "content": "Write a haiku about coding"}]
)
# Google Gemini
response = client.chat.completions.create(
model="gemini-pro",
messages=[{"role": "user", "content": "Solve this math problem: 2x + 5 = 13"}]
)
5. Advanced Features
Explore powerful features like streaming, function calling, and more:
Streaming Responsespython
stream = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Write a story about a robot"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="")
Next Steps
- • Explore our model catalog to find the best model for your use case
- • Learn about API parameters to customize responses
- • Set up streaming for real-time responses
- • Implement function calling for advanced workflows
- • Review security best practices